
NePTune

Overview

Dependable Systems Research Group
School of Computing

It is impossible to accurately characterize all of the context
characteristics material to sensor network performance in
an a priori manner. NePTune relies on a control loop
strategy that employs runtime performance monitoring,
dynamic source code generation, and network
reprogramming to optimize application performance and
resource utilization. In effect, NePTune applications benefit
from ex post facto knowledge in an a priori way.

Case Study Experimental Results

Novelty

The system architecture is composed of two tiers: a sensor network and
a basestation

Network Parameter Tuning
S.K. Wahba, S. Dandamudi, A.R. Dalton, and J.O. Hallstrom

System Architecture

The NePTune Approach
• Application installation – Installs a current version of the

application on the network
• Performance monitoring – Carries out a lightweight check to

determine whether the host’s performance is within a specified
threshold

• Tuning requests – Host signals a tuning request if performance
is deemed unacceptable over a given time period

• Context inspection – An independent application collects
relevant context data and informs binding decisions

• Snapshot generation – Basestation constructs a global context
snapshot from the data collected during context inspection

• Application generation – Basestation chooses component
realizations that optimize the network’s performance using the global
snapshot and knowledge of available binding choices

The NePTune approach was applied to a neighborhood
management service developed as part of the DESAL
language and runtime system. The service was tested on
the NESTbed system composed of 80 Tmote Sky nodes.
The neighborhood service determines the neighbors with
which a node can communicate reliably.

It is just the beginning, so stay tuned !

• Experiments were run for PRR = 71% and 91%
• Convergence time: 15 hrs (the network stabilizes when

the basestation ceases to receive tuning requests)
• Memory usage was reduced by at least a factor of 2
• Number of tuning requests decreased over time
• Neighborhood size and capacity were less variable

when PRR threshold was increased

• Dynamic binding – Binding decisions are made
dynamically to optimize network performance using
context inspection data

• Dynamic source code generation – Nodes execute
application images tailored to their local environment

• Continuous performance tuning – Optimization
cycles are carried out until the network stabilizes and/or
when changes occur in the environment

